

June 29th 2021

5th Technical Workshop on Nuclear Fuel Cycle Simulation

Development of nuclear fuel cycle scenario code NMB4.0 for integral analysis from front to back end of nuclear fuel cycle

T. OKAMURA¹, A. OIZUMI², K. NISHIHARA², M. NAKASE¹, K. TAKESHITA¹

¹Laboratory for Zero-Carbon Energy, Tokyo Institute of Technology ²Japan Atomic Energy Agency

Background

Future demand for nuclear power

Politics, R&D, Energy market... →Upside/Maintain/Downside

Nuclear fuel cycle

✓ Policy of fuel cycle and its process conditions will be varied
 ✓ Fuel cycle is a system established by multiple processes
 ⇔Advanced nuclear energy system was constructed by setting appropriate conditions

Strategy of Back-end

- ✓ Establishment of Back-end processes
- ✓ R&D have been progressed for multiple purposes
- ✓ Back-end is greatly affected by Front-end scenarios

Nuclear fuel cycle simulation required by Front & Back-end integrated approach

Nuclear fuel cycle simulation codes

Comparison of nuclear fuel cycle simulation codes based on NEA Benchmark & recent progress

Code Factor	NMB4.0	ANICCA	COSI	FAMILY-21	EVOLCODE TR_EVOL	VISION	DESAE
Institution	TokyoTech/JAEA	SCK CEN	CEA	JAEA	CIEMAT	INL	RKI
Treated nuclides	179 (26 AN 153 FP)	3850	21	20 AN		81	17 (15 AN 2 FP)
Depletion calculation model	Okamura explicit method	CRAM16	CESAR5.3 & Matrix method	Matrix exponential method	ORIGEN2.2	ORIGEN2	
Waste conditioning modeling	Yes	Yes	Yes	Yes	No	Yes	No
Repository assessment	No	Yes	Yes	No	No	Yes	No
Access	OPEN						

AN: Actinide, RKI: Russian Kurchatov Institute

$\begin{array}{l} {\rm Track\ many\ nuclides\ \times\ High\ speed} \\ {\rm \times\ Flexible\ back-end\ modeling\ \times\ OPEN\ access} \end{array}$

Nuclear Material Balance code(NMB)

```
NMB4.0
```

<u>Input</u> - NPP Rector/Fuel type,	Front-end Module	Back-end Module	<u>Output</u> - Electricity - Fuel Fabrication
Schedule, Capacity	Database (Cha	angeable)	- Storage
- RPP	- MeV per fission		- Reprocessing
Fuel type, Schedule,	- Decay/Burn-	up chain	- Nuclide in material
Capacity, Recovered	- 1-group cros	- Waste amount	
elements/Ratio	- Fission yield		- Foot-print of Repos.
- WM	- Waste mana	gement	- Radioactivity, Decay
Stabilization, Storage	- Radioactivity	//Decay	heat & Toxicity
period, Reposi. Design heat/Toxicity etc.			- Nuclide migration

<u>Main features</u>

- 1. Number of nuclides (179 nuclides: 26 actinide & 153 FP)
- 2. Reduced calculation time of depletion calculation (Okamura explicit method)
- 3. Introduction of Back-end Module

Integral analysis from front to back end of nuclear fuel cycle

Selection of 153 FP nuclides for NMB4.0

Purpose	Problem		
✓ Flexible partitioning✓ Accurate waste property	✓ Calculation speed		

Selection flow of 153 FP nuclides (FPs)

T. OKAMURA et al., JAEA-Data/Code 2020-023, 2021

- ✓ 5 factors were considered by importance of back-end scenario
- ✓ FPs were selected to agree the calculation result of ORIGEN by more than 99.9% among the all depletion calculation & factors
 - Transmittal memo of CCC371/17, ORNL, 2002

6

Modification of depletion calculation method Okamura explicit methods (OEM)

Depletion calculation

Matrix Exponential method

$$X(t + \Delta t) = \left(I + A\Delta t + \frac{1}{2!}(A\Delta t)^2 + \frac{1}{3!}(A\Delta t)^3 + \cdots\right)X(0)$$

- ✓ Every Reactor, Fuel batch... (Over 1000 times)
- ✓ Accurate calculation of short half-life nuclides (Including 153 FPs)
 - → <u>Shorten time step</u> or <u>Higher order calculation</u>(**Time**)

A method for accurately calculating short half-life nuclides at low calculation cost

⇒ Okamura explicit method (OEM)

Modification of Matrix Exponential

Comparison of Speed & Accuracy

- Conditions: 17 × 17PWR, 45 GWd/tHM, 1200 days
- PC Specs : CPU: Intel Corei9-9900KCPU @ 3.60GHz/Memory: 32.0 GB

- ✓ Calculation failed under the time steps <10⁻³ GWd. (0.8h) with MEM
- $\checkmark~$ Calculation did not fail under the longer time step with OEM
- ✓ The difference did not widen until time step 1 GWd. (32 days)
- ✓ At 10 GWd., the update step of the cross-section library was larger than that of ORIGEN, and the accuracy was reduced by about 2%.
- ✓ About 200 times accelerated by the OEM (comparison between 0.001 and 1GWd.)

Depletion cal. 6000 Times...

13-14 h

10

Back-end Module in NMB4.0

Back-end module

Flexibility

- ✓ Partitioning (MA, Sr, Cs...)
- ✓ Stabilization methods
- ✓ Storage period
- ✓ Geological repository layout etc.

WM conditions can be set for individual waste

Comprehensive WM Output

- ✓ Waste amount & Foot-print
- ✓ Nuclide composition
- ✓ Limiting factor for determining WM scenario
- ✓ Radioactivity, Decay heat, Toxicity
- ✓ Nuclide migration after disposal etc.

NMB4.0 was developed for the flexible and comprehensive analysis of back-end simulation

Benchmark

Based on the Japan's geological disposal program

vs Static NFC simulation

ORIGEN + COMSOL

• JNC TN1400 99-022, 1999.

Upper surface

- Transmittal memo of CCC371/17, ORNL, 2002
- COMSOL Multiphysics, COMSOLAB: Stockholm.

<u>Scenario</u>

PWR-UO2 →4-yr cooling → PUREX → Vitrification → 50-yr Storage → Disposal

Calculated amount

- Waste amount
 Decay Heat
- ③Radioactivity
- $\overset{\smile}{4}$ Mo content
- **⑤**PGM content
- 6 Buffer temperature

Heat transfer calculation for design of geological repository

★ Under prepared model data base

- \bigcirc The layout, occupied area...
- imes Physical data, disposal depth...

Model of geological repository

Vitrified waste

Result

Comparison of benchmark calculation results in ORIGEN+COMSOL & NMB4.0 (PWR, 45 GWd/tHM, 4-year cooling of SF, PUREX, 44.4 m²)

Amounts Code	ORIGEN+COMSOL ①	NMB4.0 (2)	(2/1 - 1)	
Number, unit/tHM	1.24	1.23	-0.528%	
Decay Heat (<mark>Initial</mark>), kW/unit	2.39	2.39	-0.271%	
Decay Heat (<mark>Disposal</mark>), kW/unit	0.347	0.347	0.0362%	
Radioactivity (Initial), Bq/unit	2.29E+16	2.3E+16	0.0925%	
Radioactivity (Disposal), Bq/unit	4.08E+15	4.09E+15	0.194%	
Mo content, wt%	1.39%	1.38%	0.185%	
PGM content, wt%	1.42%	1.42%	0.129%	
Max Buffer temp., °C	97.8	97.8	0.0117%	

The calculation accuracy of NMB4.0 is equivalent to that of ORIGEN

NEA Benchmark study

Benchmark studies

NEA benchmark in 2012

vs Dynamic NFC Codes

- FAMILY21 (JAEA)
- COSI6 (CEA)
- EVOLCODE (CIEMAT (Spain))
- VISION (INL)
- DESAE (Russian Research Centre)
- ANICCA (SCK · CEN)
 Scenarios
- S1: PWR-UO2
- S2: PWR-UO2+PWR-MOX
- S3: PWR-UO2+PWR-MOX+FBR

Nuclear Science NEA/NSC/WPFC/DOC(2012)16 \bigcirc June 2012 enchmark Study on **Nuclear Fuel Cycle Transition** Scenarios Analysis Codes ENERGY AGENCY

- NEA/NSC/WPFC/DOC(2012)16, June 2012
- Merino Rodriguez, et, al., Nuclear Engineering and Technology 52 (2020)

Calculated amount

Fuel fabrication needs, Irradiated fuel inventory, Reprocessing mass flow, TRU loss etc.

Result (S1)

Scenario 1

PWR UOX

Result (S2)

Scenario 2

Generation scenario

MOX fabrication needs

Pu for fabrication

Pu loss

Result (S3)

Summary

Developed NMB4.0

- ✓ The selected 179 nuclides are tracked
- ✓ Okamura explicit method was invented for faster & stabilized depletion calculation
 - Correct Δt of matrix exponential with $\widetilde{\Delta t_i}$
 - Stabilized calculation even if the diagonal component takes

a large negative value

✓ Developed back-end module for flexible WM simulation

Integrated analysis of nuclear fuel cycle simulation

- Next steps
- ✓ Implement the Indexes related to NFC such as Economics, Environmental impact & Risk etc.
- ✓ Publish NMB4.0 as the open code

Thank you for your attention

Supported by Laboratory for Advanced Nuclear Energy
 Some of results were based on joint research program between JAEA and TokyoTech
 We are grateful to Dr. Ivan MERINO for supporting