Impact of Fuel Supply Chain Disruptions on Energy Resilience: A case for Nuclear Energy

Guillaume L’Her, Mark Deinert
Energy Impact of Natural Hazards

- Natural hazards cause large energy network disruptions
 - Hurricanes, seismic, landslides, floods, temperature extremes, …
 - Hurricanes are notably important in the Caribbean region as they can cause high wind, flooding, and landslides
Energy Impact of Natural Hazards

- Natural hazards cause large energy network disruptions
 - Hurricanes, seismic, landslides, floods, temperature extremes, ...
 - Hurricanes are notably important in the caribbean region as they can cause high wind, flooding, and landslides
Energy Impact of Natural Hazards

- Natural hazards cause large energy network disruptions
 - Hurricanes, seismic, landslides, floods, temperature extremes, …
 - Hurricanes are notably important in the caribbean region as they can cause high wind, flooding, and landslides
Energy Impact of Natural Hazards

- Natural hazards cause large energy network disruptions
 - Hurricanes, seismic, landslides, floods, temperature extremes, ...
 - Hurricanes are notably important in the Caribbean region as they can cause high wind, flooding, and landslides
Energy Impact of Natural Hazards

- Natural hazards cause large energy network disruptions
 - Hurricanes, seismic, landslides, floods, temperature extremes, …
 - Hurricanes are notably important in the Caribbean region as they can cause high wind, flooding, and landslides
Energy Impact of Natural Hazards

- Natural hazards cause large energy network disruptions
 - Hurricanes, seismic, landslides, floods, temperature extremes, ...
 - Hurricanes are notably important in the caribbean region as they can cause high wind, flooding, and landslides
Energy Impact of Natural Hazards

- Natural hazards cause large energy network disruptions
 - Hurricanes, seismic, landslides, floods, temperature extremes, …
 - Hurricanes are notably important in the caribbean region as they can cause high wind, flooding, and landslides
Energy Impact of Natural Hazards

- Natural hazards cause large energy network disruptions
 - Hurricanes, seismic, landslides, floods, temperature extremes, ...
 - Hurricanes are notably important in the Caribbean region as they can cause high wind, flooding, and landslides.
Energy Impact of Natural Hazards

- Resilience:
 - Being able to absorb, and very quickly recover from, hazard events

- Most developing countries and at risk regions in developed countries do not have a resilient enough power infrastructure

- Three main avenues for resilience:
 - Impact on transmission lines
 - Impact on power plants
 - Impact on fuel supply chains
Energy Impact of Natural Hazards

- Resilience:
 - Being able to absorb, and very quickly recover from, hazard events

- Most developing countries and at risk regions in developed countries do not have a resilient enough power infrastructure

- Three main avenues for resilience:
 - Impact on transmission lines
 - Impact on power plants
 - Impact on fuel supply chains

<table>
<thead>
<tr>
<th></th>
<th>Fossil</th>
<th>Wind</th>
<th>Solar</th>
<th>Nuclear</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transmission</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power plant</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supply chain</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Context by example: Harvey

- Harvey hit Texas, USA on August 26, 2017
- Diverse energy sources allowing for anecdotal comparisons of impacts:
 - Oil/Gas shortages
 - High wind, no sun: renewables offline
 - Nuclear stayed online
Keeping climate change in mind

- Climate change will increase the frequency and severity of natural hazards

- Fossil fuels need to be replaced by carbon-free energy sources, notably:
 - Hydroelectricity
 - Wind
 - Solar
 - Nuclear
An Open ‘Green Energy’ Market

- Developing countries predominantly rely on fossil fuels
 - Imported fuel supply chain becomes a critical factor in the system resilience
 - Critical dependence on the road network
An Open ‘Green Energy’ Market

- Developing countries predominantly rely on fossil fuels
 - Imported fuel supply chain becomes a critical factor in the system resilience
 - Critical dependence on the road network

- Renewable energy sources are not adequate at a country scale
 - Directly vulnerable to natural hazards (short and medium term)
 - Intermittent and not suitable economically to a 100% reliance need
An Open ‘Green Energy’ Market

- Developing countries predominantly rely on fossil fuels
 - Imported fuel supply chain becomes a critical factor in the system resilience
 - Critical dependence on the road network

- Renewable energy sources are not adequate at a country scale
 - Directly vulnerable to natural hazards (short and medium term)
 - Intermittent and not suitable economically to a 100% reliance need

- Nuclear energy is a clean and stable energy source
 - Designed to be resilient to external events
 - Remove the need for frequent refueling
Our Analysis

- Quantify the fossil fuel refueling risk
 - Stochastic method based on network analysis to assess the resilience of existing power infrastructure
 - Assessment of the supply chain in the face of natural hazards
Our Analysis

- Quantify the fossil fuel refueling risk
 - Stochastic method based on network analysis to assess the resilience of existing power infrastructure
 - Assessment of the supply chain in the face of natural hazards

- Assess the SMR/MMR potential
 - Siting possibilities
 - Follow US Nuclear Regulatory Commission rules
Our Analysis

- Quantify the fossil fuel refueling risk
 - Stochastic method based on network analysis to assess the resilience of existing power infrastructure
 - Assessment of the supply chain in the face of natural hazards

- Assess the SMR/MMR potential
 - Siting possibilities
 - Follow US Nuclear Regulatory Commission rules

- Demonstrate on the Commonwealth of Dominica
Dominica
Existing Infrastructure In Dominica

- **Hydropower**: Roseau river → 6.6 MW
- **Diesel plants**:
 - Fond Cole (south) → 13.3 MW
 - Sugar Loaf (north) → 6.8 MW
- **Seaport**
- **3 Ports**
Exposure Assessment and Informed Probabilities

An example of road exposure to natural hazards

Failure probabilities are obtained for each road segment
Exposure Assessment and Informed Probabilities

An example of road exposure to natural hazards

Failure probabilities are obtained for each road segment

A: Road network B: 0.02 annual flood probability (“50-year”) extent
Exposure Assessment and Informed Probabilities

An example of road exposure to natural hazards

Failure probabilities are obtained for each road segment
Exposure Assessment and Informed Probabilities

An example of road exposure to natural hazards

Failure probabilities are obtained for each road segment
Exposure Assessment and Informed Probabilities

Monte Carlo analysis:
- 1000 simulations
- The network is disrupted according to the road segment failure likelihood in a 50-yr flooding situation.
- Supply chain impact is obtained (in terms of time)

<table>
<thead>
<tr>
<th></th>
<th>Number of simulations</th>
<th>Time impact (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fond Cole</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(13.3 MW)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sugar Loaf</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(6.8 MW)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Exposure Assessment and Informed Probabilities

Monte Carlo analysis:
- 1000 simulations
- The network is disrupted according to the road segment failure likelihood in a 50-yr flooding situation.
- Supply chain impact is obtained (in terms of time)

<table>
<thead>
<tr>
<th>Number of simulations</th>
<th>Time impact (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fond Cole (13.3 MW)</td>
<td></td>
</tr>
<tr>
<td>Sugar Loaf (6.8 MW)</td>
<td></td>
</tr>
</tbody>
</table>

Stranded asset!
Market Opportunity For Nuclear Energy

- 20 MW of fossil fuel power to transition
 - 6.8 MW at high risk of supply disruptions
- Another 6.6 MW at high flooding risk (run-of-the-river hydro plants)

- Between 6.8 and 26.6 MW market on this developing island nation
Local Potential of Nuclear Energy

- The potential of Small Modular Reactor (SMR) is assessed locally
 - Using NRC siting regulations, find siting locations of interest to show viability

- Use Geospatial Information System analysis
 - Combine all relevant map data layers to reveal suitable nuclear siting locations
Consideration of NRC Equivalent Siting Rules for SMR
Consideration of NRC Equivalent Siting Rules for SMR

- Land with a population density greater than 500 people per square mile is excluded.
Consideration of NRC Equivalent Siting Rules for SMR

- Land with a population density greater than 500 people per square mile is excluded.
- Wetlands and open water are excluded.
Consideration of NRC Equivalent Siting Rules for SMR

- Land with a population density greater than 500 people per square mile is excluded.
- Wetlands and open water are excluded.
- Protected lands (e.g., national parks, historic areas, wildlife refuges) are excluded.
Consideration of NRC Equivalent Siting Rules for SMR

- Land with a population density greater than 500 people per square mile is excluded.
- Wetlands and open water are excluded.
- Protected lands (e.g., national parks, historic areas, wildlife refuges) are excluded.
- Land with a significant landslide hazard susceptibility is excluded.
Consideration of NRC Equivalent Siting Rules for SMR

- Land with a population density greater than 500 people per square mile is excluded.
- Wetlands and open water are excluded.
- Protected lands (e.g., national parks, historic areas, wildlife refuges) are excluded.
- Land with a significant landslide hazard susceptibility is excluded.
- Land that lies within a 50-year floodplain is excluded.
Consideration of NRC Equivalent Siting Rules for SMR

- Land with a population density greater than 500 people per square mile is excluded.
- Wetlands and open water are excluded.
- Protected lands (e.g., national parks, historic areas, wildlife refuges) are excluded.
- Land with a significant landslide hazard susceptibility is excluded.
- Land that lies within a 50-year floodplain is excluded.
- Land areas that are more than 20 miles from cooling water makeup sources with at least 65,000 gpm are excluded.
Consideration of NRC Equivalent Siting Rules for SMR

- Land with a population density greater than 500 people per square mile is excluded.
- Wetlands and open water are excluded.
- Protected lands (e.g., national parks, historic areas, wildlife refuges) are excluded.
- Land with a significant landslide hazard susceptibility is excluded.
- Land that lies within a 50-year floodplain is excluded.
- Land areas that are more than 20 miles from cooling water makeup sources with at least 65,000 gpm are excluded.
- Land too close to identified fault lines is excluded.
Consideration of NRC Equivalent Siting Rules for SMR

- Land with a population density greater than 500 people per square mile is excluded.
- Wetlands and open water are excluded.
- Protected lands (e.g., national parks, historic areas, wildlife refuges) are excluded.
- Land with a significant landslide hazard susceptibility is excluded.
- Land that lies within a 50-year floodplain is excluded.
- Land areas that are more than 20 miles from cooling water makeup sources with at least 65,000 gpm are excluded.
- Land too close to identified fault lines is excluded.
- Land with safe shutdown earthquake (SSE) peak ground acceleration (2% chance in a 50 year return period) greater than 0.5 g is excluded.
Consideration of NRC Equivalent Siting Rules for SMR

- Land with a population density greater than 500 people per square mile is excluded.
- Wetlands and open water are excluded.
- Protected lands (e.g., national parks, historic areas, wildlife refuges) are excluded.
- Land with a significant landslide hazard susceptibility is excluded.
- Land that lies within a 50-year floodplain is excluded.
- Land areas that are more than 20 miles from cooling water makeup sources with at least 65,000 gpm are excluded.
- Land too close to identified fault lines is excluded.
- Land with safe shutdown earthquake (SSE) peak ground acceleration (2% chance in a 50 year return period) greater than 0.5 g is excluded.
- Land within a volcanic high risk area is excluded.
Siting Potential for Small Modular Reactor

1 issue
2 issues
3 issues
4+ issues
no issue

30 arcsecond → 1x1 km
Siting Potential for Small Modular Reactor

30 arcsecond → 1x1 km
Sugar Loaf power plant site infrastructure could even be reused for a small modular reactor.
Takeaways

- Grids based on fossil fuels are not resilient to supply chain disruptions
Takeaways

- Grids based on fossil fuels are not resilient to supply chain disruptions
- Renewable energy cannot be used during and often after natural disasters
Takeaways

- Grids based on fossil fuels are not resilient to supply chain disruptions

- Renewable energy cannot be used during and often after natural disasters

- Nuclear is valuable
 - Resilient (to almost every hazards and supply chain disruptions)
 - Reliable (high capacity factor)
 - Responsible (clean, and plays well with renewable energy microgrids)
Takeaways

- Grids based on fossil fuels are not resilient to supply chain disruptions

- Renewable energy cannot be used during and often after natural disasters

- **Nuclear is valuable**
 - Resilient (to almost every hazards and supply chain disruptions)
 - Reliable (high capacity factor)
 - Responsible (clean, and plays well with renewable energy microgrids)

- **Emerging grids: SMR and MMR market**
 - Adapted to small grids in development
 - Scalable
 - Suitable locations exist