Estimation of the vitrified canister production for a PWR fleet with the CLASS code TWoFCS 2021

L. Tillard, X. Doligez, G. Senentz, M. Ernoult, J. Liang, N. Thiollière

Introduction

Fuel cycle strategy analysis → Fuel cycle impact quantification

One output of interest: waste production

- → Effects: deep geological waste repository, ...
- CLASS used for actinide inventory quantification (mass & isotopy)
- But other important physical quantities
- Vitrified canisters (CSD-V)

→ New developments in CLASS

Core Library for Advanced Scenario Simulation

Simplified vitrification model

- Reprocessed HM mass
- Criteria
 - Decay heat at production time
 - Cumulative α dose over 10 000y
 - FPA oxide mass content

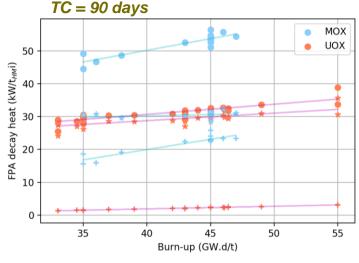
Number of CSD-V produced

Outline

- 1. Global approach validation
- 2. Data base construction
- 3. Simplified vitrification modelling
- 4. Scenario definition
- 5. Scenario analysis

Global approach validation

Strong variations of decay heat with FP isotopic composition


FP calculation in **CLASS**

• « Usual » method: ANN predictions per isotopes

- Some XS missing for precise FP calculation
 - Mean deviation for MOX fuels ~10%
- Increase of simulation time

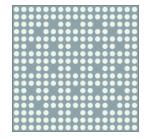
Global approach

- CESAR calculations: different UOX & MOX compositions
- Mass: linear functions of burn-up
- Decay heat: functions of burn-up if TC>3 years
- → Function of fuel type, compositions, burn-up & TC
- → Direct prediction of the quantities of interest in CLASS

- * Fission products
- + Actinides
- FPA

Data base construction

2 data base family: depletion simulations \rightarrow


- Sampling (LHS)
 - <u>UOX/ERU</u>: 200 initial compositions → VU + ²³⁵U enrichment
 - <u>MOX/MIX</u>: 500 initial compositions \rightarrow VPu +Pu content + ²³⁵U enrichment
 - Discharge burn-up \rightarrow [0;55] GW.d/t
 - Cooling time \rightarrow [3;100] y

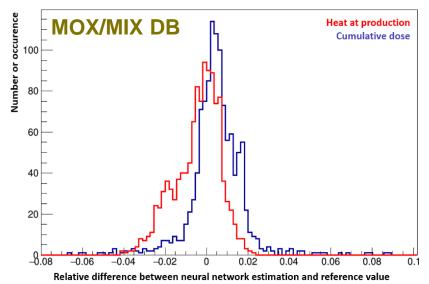
Post-irradiation data calculation

- Decay heat at production
- Cumulative α dose over 10 000y
- FPA oxide mass content

Data base construction

2 data base family: depletion simulations \rightarrow

Sampling (LHS)


- UOX/ERU: 200 initial compositions → VU + ²³⁵U enrichment
- MOX/MIX: 500 initial compositions → VPu +Pu content + ²³⁵U enrichment
- Discharge burn-up \rightarrow [0:55] GW.d/t
- Cooling time \rightarrow [3;100] y

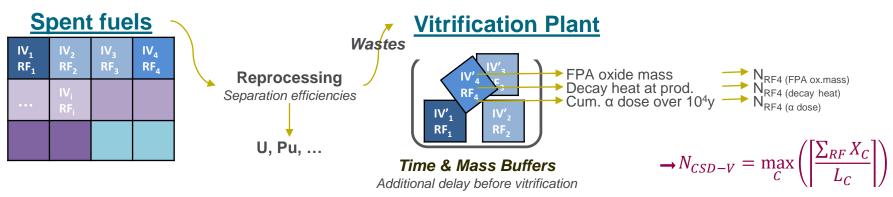
Post-irradiation data calculation

- Decay heat at production
- Cumulative α dose over 10 000y
- FPA oxide mass content

Predictor accuracy verification

- Independent data bases
- Standard deviation on CSD-V production <1.5%

Estimation of the vitrified canister production for a PWR fleet with the CLASS code **TWoFCS 2021**


Simplified vitrification modelling

ReactorFuel

- Fuel fabrication → Waste vitrification
 - Fuel & reactor type
 - Initial fuel composition
 - Discharge burn-up
 - Updated cooling time before <u>vitrification</u>

Vitrification Plant

- CSD-V characteristics
 - Container mass
- Conversion factor (HM mass → oxide mass)
- Buffers
- Limit values for the 3 criteria L_C
- For each RF \rightarrow ANN predictions X_c

1530 MW_α, 51.8 GW.d/t, 129 t_{HM} 300

• MIX: Pu content 8%, ²³⁵Ue <5%

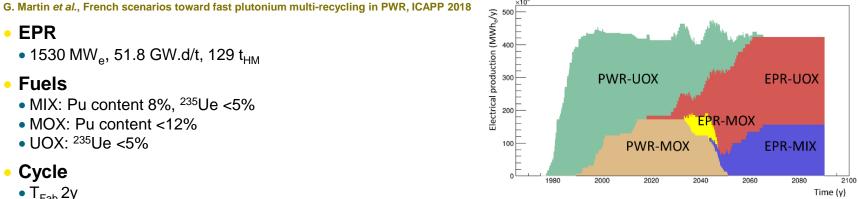
Scenario definition

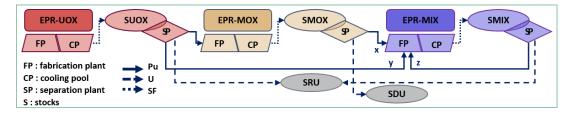
Pu mono-recycling fleet \rightarrow Pu multi-recycling fleet

- MOX: Pu content <12%
- UOX: ²³⁵Ue <5%

Cycle

• EPR

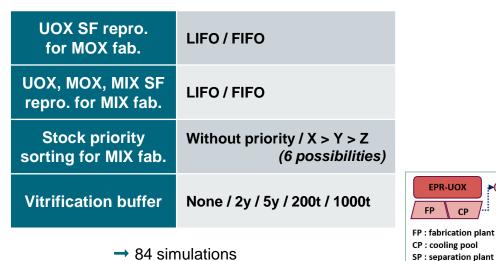

Fuels

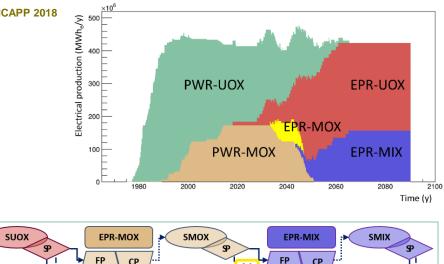

- T_{Fab} 2y
- Minimal T_C 5y

Vitrification

- CSD-V mass 410 kg
- Conversion factor 1.2
- Limits FPA oxide mass 18.5%
 - Decay heat 3 kW/CSD-V
 - α dose 2.5 10¹⁹ α des/α of glass

Scenario definition


Pu mono-recycling fleet \rightarrow Pu multi-recycling fleet


СР

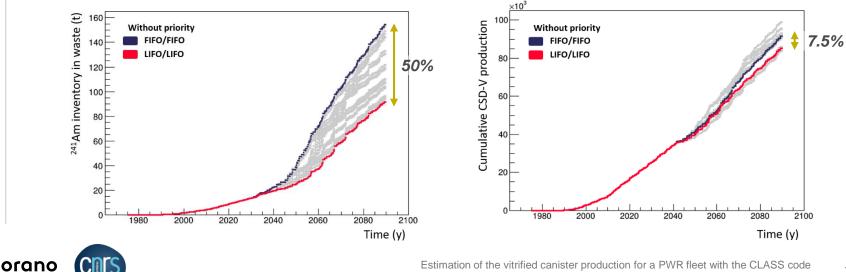
S: stocks

G. Martin et al., French scenarios toward fast plutonium multi-recycling in PWR, ICAPP 2018

Parameters

SDU

9


SRU

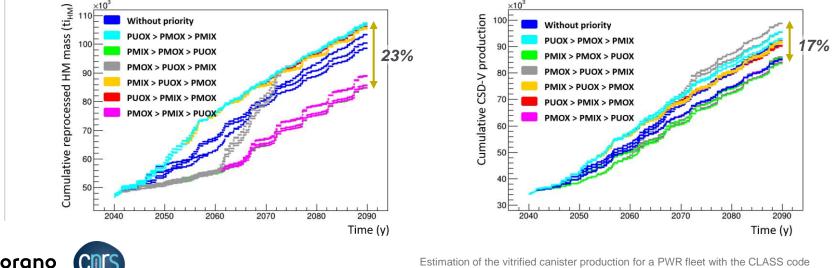
Waste inventory

²⁴¹Am optimisation ≠ CSD-V optimisation

FIFO / FIFO

- Maximal TC before reprocessing → Maximal ²⁴¹Pu decay → Maximal ²⁴¹Am (MA & Am) inventory
- 'Old' SF treatment not a priority
- ²⁴¹Am: high impact on α dose **<u>BUT</u>** not the main driver of CSD-V production

10


TWoFCS 2021

Reprocessed HM mass

Stock priority sorting for MIX fabrication & CSD-V production

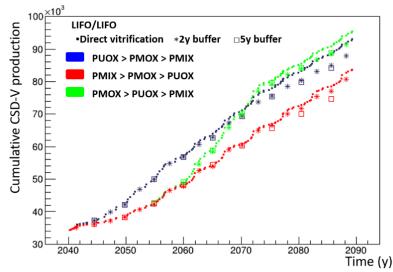
UOX SF priority

- Less Pu in UOX SF and Pu content = 8% in MIX fuel → higher reprocessed HM mass → more CSD-V
- \bullet Less MAs in UOX SF \rightarrow less alpha dose in the vitrified wastes \rightarrow less CSD-V / $t_{\rm HM}$
- Different variations: more reprocessed HM mass but less CSD-V per reprocessing

Estimation of the vitrified canister production for a PWR fleet with the CLASS code TWoFCS 2021

Buffer impacts

Double advantage due to buffers


Increase the cooling time before vitrification

- Decay heat decrease
- No ²⁴¹Am inventory increase (Pu already separated)

Increase mixing possibilities

- \bullet Reduction of MIX & MOX α dose / t_{HM} reprocessed
- Optimising the container load

	2-year buffer	5-year buffer
$P_{MOX} > P_{UOX} > P_{MIX}$	2.5%	2.3%
P _{UOX} >P _{MOX} >P _{MIX}	4.0%	4.7%
P _{MIX} >P _{MOX} >P _{UOX}	8.0%	10.8%

Conclusions

New CLASS feature : simplified vitrification modelling

CSD-V estimation

- Physical limit calculations thanks to predictors
- → ANN trained on SMURE depletion data bases
- → Models for PWRs UOX/ERU and MOX/MIX fuels
- → Decay heat, cumulative alpha dose and FPA mass content
- Physical analysis of limits reached during vitrification
- Other outputs of interest: required reprocessing capacities

Application to plutonium multi-recycling scenarios

- Variable reprocessing strategies
 - Impact on required reprocessing capacities (~23%) ; smaller impact on CSD-V production (~17%)
- ²⁴¹Am mass in wastes \rightarrow not the main driver for the estimation of CSD-V production

Variable vitrification parameters

• Buffer impact up to ~ -10% for CSD-V production (but not systematic)

Thanks !

orano

Donnons toute sa valeur au nucléaire