

Development progress and methodology of FANCSEE fuel cycle code

B. Chmielarz (KTH, USNC Europe), W. Gudowski (KTH), Y. Hrabar (KTH), C. Ding (KTH, Tsinghua University),

J. Zou (KTH, Tsinghua University) and A. Bidakowski (Uppsala University)

Contents

- 1. Overview of FANCSEE
- 2. Summary of capabilities
- 3. Results of thesis by Y. Hrabar
- 4. Summer school course in Oskarshamn
- 5. Project status & Acknowledgements

Introduction

- FANCSEE is a **standalone** advanced fuel cycle simulation code originally developed at KTH, Sweden
- Written in C and C++ for Linux

Idea behind FANCSEE

- Fuel cycle simulation code
- GUI controlled
- User-friendly
- For simple and complex scenarios
- Short runtime
- For students, researchers, policymakers

Main features

Reactor libraries:

- PWR, BWR, LFR, HTGR, SFR
- Calculated with Serpent 2, processed in MATLAB
- Burnup matrix exponential solved with Chebyshev Rational Approximation Method (CRAM)

Output:

- Tracking of up to 1307 different nuclides
- Plotting of results for each facility and nuclide
 - Nuclide mass
 - Inhaled or ingested toxicity
 - Radioactivity
- Results can be plotted directly or exported to MATLAB

Scenarios

Scenarios are simulated through setting up facilities with discrete functions and parameters.

The possible facilities are:

- Uranium Mines
- Enrichment Plants
- Reprocessing Plants
- Fuel Factories
- Reactors
- Waste Repositories

Facility parameters

- Mine, Enrichment Plant, Fuel Factory and Reprocessing Plant can have a processing capacity limit (in kg/day)
- Reprocessing Plant parameters
 - Reprocessing order
 - First In First Out (FIFO) or Last In First Out (LIFO)
 - Reprocessing limit number of times a fuel batch can be reprocessed
 - Minimum cooling time before reprocessing [years]
 - Maximum viable age for reprocessing [years]

Reactor parameters

- Power
- Fuel mass (heavy metals mass only)
- Fuel type
- Reactor type
- Number of fuel batches
- Fuel cycle time
- Refueling time
- (Pu) Enrichment

Scenario types

FANCSEE can calculate

- Open cycles
- Partially closed cycles
- Fully closed cycles
- Decay of isotopes

Results section

- Core designs were implemented by students of KTH
 - Y. Hrabar (KTH)
 - C. Ding (KTH, Tsinghua University)
 - J. Zou (KTH, Tsinghua University)
 - A. Bidakowski (KTH, Uppsala University)
- Results from Master's thesis of Y. Hrabar

Development, benchmarking and validation of the Advanced Nuclear Fuel Cycle Simulator – FANCSEE and advanced use of Monte Carlo methods in nuclear reactor calculations, CentraleSupelec - University Paris-Saclay 2019

Phénix results

Phénix results

- Core with two regions of different enrichment of plutonium in the form of a UO₂ – PuO₂ mixed oxide
- Detailed core and fuel composition implementations
- 5 types of fuel libraries

Parameter	563 MW 1974-1993	350 MW 1993-2009
Thermal power [MW]	563	345
Gross electrical power [MW]	250	142
Net electrical power [MW]	233	129
Neutron flux at core centerline (n/cm^2s)	$7 \cdot 10^{15}$	$4.5 \cdot 10^{15}$
Primary sodium core outlet temp. [°C]	560	530
Primary core inlet temp. [°C]	400	385
Secondary sodium SG inlet temp. [°C]	550	525
Superheated steam temp. [°C]	512	490
Turbine HP cylinder steam pressure [bar]	163	140

Phénix results comparison

- Initial differences related to lower flexibility of fuel inputs in FANCSEE than Serpent
 - Depleted U enrichment is fixed in FANCSEE
 - Pu vector depends on the rest of the cycle (LWR cycle)
 - No custom first batch definition
- Changes in inventory between codes are in agreement

BREST results

BREST results

- Detailed model based on documentation from 1997 by Research and Development Institute of Power Engineering
- 6 different libraries: initial and average old fuel batches, two enrichment zones, two blanket zones

Parameter	Quantity
Thermal power[MW]	700
Net electrical power [MW]	300
Coolant	lead
Coolant temperature at core inlet [K]	693
Coolant temperature at core outlet [K]	813
Number of steam generators	8
Number of primary pumps	4
Core fuel	UN + PuN
Core fuel load [t]	16.7
Breeding ratio	1.06

BREST results comparison

- · Conclusions similar as in Phénix
- Changes in inventory between codes are in agreement

HTTR results

- Single batch loading pattern
- Non-homogeneous fuel
- From SERPENT 2 demo files with permission of J. Leppänen

Parameter	Quantity
Thermal power[MW]	300
Average power density [W/cm ³]	2.5
Coolant	helium
Coolant temperature at core inlet [K]	395
Coolant temperature at core outlet [K]	950
Primary coolant pressure [MPa]	4
Core structure	
graphite	
Number of steam generators	8
Number of primary pumps	4
Core fuel	UO_2
Uranium enrichment	3 to 10 wt $\%$
Burnup-up period [EFPD]	660

HTTR results comparison

- Results between SERPENT and FANCSEE were in good agreement
- Simpler fuel scheme single-batch loading pattern prevents initial results disagreemens

Summer school 2019

- Afternoon exercise done 17/6/2019 in Oskarshamn, Sweden
 - Part of "Elements of the Back-end of the Nuclear Fuel Cycle" course
 - Organized together with KTH and W. Gudowski
 - Led by B. Chmielarz and Y. Hrabar
- Students belonged to nuclear engineering courses from US, Sweden, France and China
- Goals :
 - Familiarize students with different types of fuel cycles
 - Visualize long-term SNF repository requirements by calculating the scenario of Sweden

Summer school 2019 analysis

- Only a few teams have finished the exercise
 - Only the most tech-savvy students were ahead of time
- Unforeseen technical difficulties eat up time
 - Old hardware (32-bit systems)
 - Laptops without USB-A ports
 - Students unfamiliar with Linux or VMs
- The most mixed results out of all classes given
 - Liked and disliked by equally many
 - 4.8/7(28 evaluations)

Project status

- Supervisor of the project (W. Gudowski)
 retired from KTH
- Lead developer (B. Chmielarz) works for a different organization
 - Movement of competences and ownership required to continue development
- Looking for a PhD student at NCBJ, Poland

Acknowledgements

• Part of this project has been funded within the European Project "Brilliant", Grant Agreement: 662167

Thank you for your attention!

Questions?

🗙 Fuel Cycle Simulator (version 0.99)	- 0
Eile <u>E</u> dit <u>Simulation</u> <u>P</u> lot	
	S cenario
	Grid power [MW]
	Electricity Supplied [G
	Scale
	lcons
	lcon Labels
	Transparency
	Arrows
	Connect
Sto	pped

🗙 Fuel Cycle Simulator (version 0.99)	- 🗆 X
<u>File Edit Simulation Plot</u>	
•	Scenario
	Grid power [MW]
	Electricity Supplied [GWd]
	Scale
	Transparency
	Arrows
	Connect
Stopped	