

<u>Anne-Laure Mazauric</u>, Pierre Sciora, Jean-Baptiste Droin, Vincent Pascal (CEA, IRESNE) Yvon Bésanger, Nouredine Hadjsaïd (CNRS, G2Elab) Quoc Tuan Tran (CEA, LITEN)



ADAPTATIONS OF A NUCLEAR REACTOR MODEL TOWARDS MORE FLEXIBILITY in order to accommodate a power system with a high insertion of variable renewable energy sources

#### July 2nd 2021

5th Technical Workshop on Nuclear Fuel Cycle Simulation (TWoFCS)

Commissariat à l'énergie atomique et aux énergies alternatives - www.cea.fr

## CEA CONTEXT



#### Power system:

- Role: transport electricity from generating units to load locations
- Objective: ensure production and consumption balance at all time
- Historically: imbalance on the load side only



## CEA CONTEXT



### Power system:

- Role: transport electricity from generating units to load locations
- Objective: ensure production and consumption balance at all time
- Historically: imbalance on the load side only



### Actual and upcoming challenges:

- Demand side: Continuous variation of the load BUT demand management, new uses, ...
- Supply side: RES\* ↑ and high CO2 emitting power plant → 0 BUT electric mobility park, decentralised productions...

\*RES: Renewable Energy Sources

# Cea context

- In case of disturbance:
  - Caused by load or generation variation, grid default, ...
  - Frequency controls occur





# CEA CONTEXT

### In case of disturbance:

- Caused by load or generation variation, grid default, ...
- Frequency controls occur
- Levers such as NPP or other dispatchable units

| Hydro   | > 25 |
|---------|------|
| Diesel  | 25   |
| Gas     | 7    |
| Coal    | 5    |
| Nuclear | 5    |

**%Pn/min** max

\* Mazauric et al, EPJN, under review

Anne-Laure Mazauric anne-laure.mazauric@cea.fr – TWofCS



- Nuclear in the frequency control:
  - Mainly used for load following because of the French fleet
  - Maximal power ramp of 5%Pn/min
- →This work is part of an overall methodology approach capable of defining a criterion at the interface of power systems and nuclear design\*

→Minimal electric power ramp to ensure stability for high RES disturbance (%Pn/min): INPUT of this study\*

#### **STATE OF THE NUCLEAR HELP TO THE FREQUENCY CONTROL** *Free dynamic*



Cea

**STATE OF THE NUCLEAR HELP TO THE FREQUENCY CONTROL** *Primary frequency control* 



### Cea

#### **STATE OF THE NUCLEAR HELP TO THE FREQUENCY CONTROL** *Load following*



## **OBJECTIVES OF THE STUDY**

### Goal:

- Build a simple NPP model capable of reproducing frequency transients as much as possible
- $\circ$  Deduce ways to study more flexibility in the design of the reactor model
- ightarrow Observe the behaviour of a reactor and the analysis of variables of interest during power transients imposed by the electrical network.
- Modelling must be easily editable

### Assumptions:

- Normal operation and close to the nominal operating point (100%Pn)
- One simplified regulation is taken into account (instead of 2), therefore only transients described as follow will be considered:
  - Electric power ramps greater than 5%Pn/min (maximal nuclear power ramp)
  - Larger variation magnitude than 2,5%Pn (current primary frequency magnitude)

## Cea MODEL DESCRIPTION

- Model of a 1300 MW PWR
- Limit condition : SG power linked directly to electric

Neutronic point kinetic Enthalpy balances Thermal inertia



Simplified regulation



- With C-PWR-1300 from Corys : academic simulator
- High magnitude transient // load following : -10%Pn with 5%Pn/min maximal power ramp



Free dynamic is also validated

VALIDITY OF THE MODEL



**CONSTRAINT-BASED MODEL** 

Higher ramp as input : -10%Pn/min and compared to the reference case -5%Pn/min



- Core response is accelarated
- But some safety parameters may be degraded because gradients are stronger

## Cea SENSITIVITY STUDY - CARACTERISTICS

- Objectives of the study:
  - $\circ$  Modifiy some parameters of the design
  - $\circ$  Quantify the impact on the model thanks to indicators
- Parameters:
  - Neutronic
  - o Thermohydraulic
  - o Control

 $\rightarrow$  Time delay of the entire primary loop  $\tau$ 

 Indicators: safety, performance and control use (normalization is done)

| Factors                                | Unit | Factor's definition                                                                                              | Impacted domain                       |
|----------------------------------------|------|------------------------------------------------------------------------------------------------------------------|---------------------------------------|
| $\frac{\Delta}{\Delta t} P_{coeur}$    | MW/s | Core power gradient averaged over 1 sec                                                                          | Core performance                      |
| τ <sub>coeur</sub>                     | S    | Response time at 95% of core power i.e.<br>time after which the core power has<br>reached 95% of its final value | Core performance                      |
| $\frac{\Delta}{\Delta t}T_c$           | °C/s | Fuel temperature gradient averaged<br>over 1 sec                                                                 | Safety of the core                    |
| $\frac{\Delta}{\Delta t}T_{e_{GV}}$    | °C/s | Core inlet temperature gradient<br>averaged over 1 sec                                                           | Safety of the steam generator         |
| $\frac{\Delta}{\Delta t}T_{e_{coeur}}$ | °C/s | Steam generator inlet temperature<br>gradient averaged over 1 sec                                                | Control rod use                       |
| $\Delta \rho_{ext}$                    | рст  | Maximum amplitude of reactivity<br>inserted or withdrawn by the power<br>control                                 | Control rod use and associated safety |

### SENSITIVITY STUDY – REFERENCE MODELS



#### **SENSITIVITY STUDY – SOME RESULTS** C27



### Building of a simple PWR model capable of simulating frequency control transients driven by the input data %Pn/min (from power system)

- Possibility to modify some design parameters (example of τ)
- These parameters have impact on safety, flexibility, control use
- Part of a global approach at the interface of power system & nuclear design
- Perspectives :
  - Sensitivity of different parameters simultaneously in order to find a better compromise between perfomance / safety / control use
    Towards the use of this model for other core designs
    Coupling of the model with electric power system dynamic simulation software
- Anne-Laure Mazauric anne-laure.mazauric@cea.fr TWofCS

CONCLUSIONS



## **THANK YOU FOR YOUR ATTENTION !**

Anne-Laure Mazauric anne-laure.Mazauric@cea.fr

Commissariat à l'énergie atomique et aux énergies alternatives - www.cea.fr