

Development of a MOX equivalence Python code package for ANICCA 5th Technical Workshop on Fuel Cycle Simulation (TWoFCS 2021)

Bart Vermeeren

RESTRICTED

CONFIDENTIAL

Engineering a carbon-neutral future

Contents

- Introduction
- Tools and methods
 - ANICCA Advanced Nuclear Inventory Cycle Code: ANICCA
 - Directive Pu vector mesh generation
 - Linear Reactivity Model & MOX energy equivalence principle
- Case study: fuel reprocessing of representative irradiated fuel stock
 - Fuel cycle scenario description
 - Results and discussion
- Conclusion

Introduction

Decision for spent UOX fuel reprocessing strategy

- Situation = decision for spent UOX fuel reprocessing is taken after long period of once through operating mode:
 - Reprocessing strategy for spent UOX fuel will be defining parameter in evolution of spent fuel inventory: FIFO (First In, First Out) or LIFO (Last In, First Out)?
 - o Identify possible need for interim storage buildings and associated capacity dimensioning
 - Analysis may become very complex as difference in origin (different PWRs) of spent fuel, irradiation history (burnup), and cooling time all introduce additional **dispersion to Pu vector**
- Scope = extend ANICCA (Advanced Nuclear Inventory Cycle Code), a fuel cycle analysis tool developed at SCK CEN (Belgium), with MOX equivalence Python code package:
 - Determine reactivity evolution for any given Pu vector by means of multidimensional interpolation on mesh of pre-calculated data tables generated by WIMS10, thereby covering physically accessible Pu vector space
 - **Perform online calculation of Pu content requirements** in MOX fuel fabrication for a given fuel cycle scenario to obtain energy equivalence

Introduction

Impact of reprocessing strategy on front-end of fuel cycle

• Neutronics:

- During storage: ²⁴¹Pu decays into ²⁴¹Am
- Reprocessing: ²⁴¹Am is eliminated
- After reprocessing: new ²⁴¹Am accumulation

 $^{\rm 241}Am,\,^{\rm 240}Pu$ and $^{\rm 242}Pu$ are neutron absorbers

- Storage and fabrication:
 - Residual heat: ²³⁸Pu + ²⁴¹Am
- Radiation protection:
 - o ²⁴⁰Pu, ²⁴²Pu = spontaneous fission
 - $_{\odot}~^{238}\text{Pu},~^{241}\text{Am}$ (a, n) on ^{17}O & ^{18}O
 - \circ (weak γ by $^{241}Am)$

01/07/2021 Development of a MOX equivalence Python code package for ANICCA - 5th Technical Workshop on Fuel Cycle Simulation (TWoFCS 2021

01/07/2021 Development of a MOX equivalence Python code package for ANICCA - 5th Technical Workshop on Fuel Cycle Simulation (TWoFCS 202:

6

PUBLIC

Tools and methods

ANICCA – Advanced Nuclear Inventory Cycle Code: ANICCA

- ANICCA = Advanced Nuclear Inventory Cycle Code: ANICCA
- Fuel cycle analysis tool to monitor flow of nuclear material between facilities
- Python code developed at SCK CEN (Belgium)
- Flexible/modular code allowing for easy modification of scenarios but also for further code development
- Mid- and long-term cycle calculations:
 - Nuclear power plant fleet management
 - Waste characterization

o ...

• Reprocessing of spent fuel

Directive Pu vector mesh generation

- Dispersion of average Pu isotopy of MOX batch is mainly due to following (physical) processes:
 - Fuel assemblies with different burnups, enrichments and design (e.g., 8, 12 and 14 ft assemblies)
 - Radioactive decay due to cooling time of fuel assembly
 - o Radioactive decay due to delay between reprocessing and loading of fuel in core
- Need to go beyond simplified equivalence model (with fixed weighting factors) depends on in-core fuel management specificities (cycle length, feed size, etc.):
 - o Neutronic calculations required for every modification to re-determine weighting factors
 - Not very flexible for use in realistic (variable or perturbed) fuel cycle scenarios in ANICCA

Directive Pu vector mesh generation

- Build a multi-dimensional reactivity mesh for all realistically achievable:
 - Pu vectors (²³⁸Pu, ²³⁹Pu, ²⁴⁰Pu, ²⁴¹Pu, ²⁴²Pu, ²⁴¹Am)
 - Discharge burnups (0 64 GWd/tU)
 - Pu fractions (6% 8% 10% 12%)
- Based on empirical correlations:
 - Typical reference Pu vector as starting point:
 21 yrs cooling time + 1 yr between reprocessing and core loading + *α* between [70%-100%]
 - o perturbations based on realistic Pu vector data
- ~3000 WIMS10 calculations (■) to cover physically accessible Pu vector space and Pu fractions per assembly

 α is inversely proportional to assembly burnup

Directive Pu vector mesh generation

01/07/2021 Development of a MOX equivalence Python code package for ANICCA - 5th Technical Workshop on Fuel Cycle Simulation (TWoFCS 2021)

Directive Pu vector mesh generation

 MOX equivalence Python code package for ANICCA: returns reactivity evolution for any given Pu vector covering Pu fractions (6% – 8% – 10% – 12%) and discharge burnups (0 – 64 GWd/tU) by means of interpolation on this directive Pu vector mesh

Linear Reactivity Model & MOX energy equivalence principle

25000

20000

15000

Fuel assembly r 00001

5000

0

ctivity [pcm]

UOX@4.3%

Linear Reactivity Model (LRM) = bi-linear equation providing reactivity (ρ) as function of burnup (BU) and U5 enrichment / Pu content (ε) with 4 calibrated parameters:

 $\rho = \rho_0 + BB * BU + BE * \varepsilon + BEB * \varepsilon * BU$

- Determine required Pu content for given Pu vector and in-core fuel management requirements:
 - Reactivity evolution of UOX given by Linear Reactivity Model (LRM): reactivity UOX@EOC = f(EOC burnup, initial U235 enrichment)
 - Request equivalence of MOX with UOX fuel at EOC core average burnup: reactivity curves need to cross over at average EOC core burnup
 - Inverse operation on directive Pu vector reactivity mesh: Pu content = f(reactivity UOX@EOC, EOC burnup, Pu vector)

UOX - WIMS10

UOX - LRM

MOX - WIMS10

MOX - LRM

Case study

assumed first reprocessing

newest assemblies are reprocessed first

TRACTEBEI

Case study

Fuel reprocessing of representative irradiated fuel stock

* accounting for reduced ²³⁵U support enrichment in burnable poison rods

Equivalence target in following ICFM:

Reactor power	3 GWth
Cycle length	18 months
Capacity factor	93%
Core heavy metal mass	84.7 tHM
Fresh feed size	64 FAs
Number of fuel batches	3
Average assembly discharge burnup	44.1 GWd/tHM
UOX enrichment*	4.3 % ²³⁵ U
MOX support enrichment	0.25 % ²³⁵ U
MOX/UOX ratio	1/4

Case study

Fuel reprocessing of representative irradiated fuel stock

 Industrial MELOX process limited to <12% Pu max, or <10.6% average when accounting for radial zoning

FIFO: almost not sensitive to delay

• LIFO: reduced Pu requirements if MOX fuel is loaded shortly after Pu reprocessing

 t_0 = assumed first reprocessing, then every 1.5 yrs 16 MOX assemblies are fabricated from irradiated fuel stock (=1/4 of feed size)

• FIFO (1.5 yrs delay) + FIFO/LIFO (12 yrs delay) are rather similar

Fuel reprocessing of representative irradiated fuel stock

terms of heat load removal even though stockpile inventory remains higher than FIFO at all times

 Possible impact on radiation protection in Pu reprocessing facility: LIFO strategies result in higher heat load and radiotoxicity of vitrified waste

LIFO strategies are more beneficial in

Case study

Fuel reprocessing of representative irradiated fuel stock

12

FIFO - 1.5 years delay (irradiated UOX stockpile)
 FIFO - 1.5 years delay (Pu reprocessing facility)

Case study Fuel reprocessing of representative irradiated fuel stock

- Scenario analysis for capacity dimensioning of interim spent fuel storage buildings:
 - Gradual phase-out of all but two PWRs between
 t₀ and t₀ + 6 years
 - One remaining PWR continues UOX operation until *t_o* + 13.5 years
 - Other remaining PWR switches at t₀ to:
 - ¼ MOX FIFO 1.5 yrs delay (reprocessing → loading)
 - ¼ MOX LIFO 1.5 yrs delay (reprocessing → loading)
 - Full UOX core (as before)
- On-site spent fuel inventory growth can be reduced to +18 à 20% instead of +36%!

Conclusion

- Fuel cycle analysis tool ANICCA (SCK CEN) has been extended with a MOX equivalence Python code package (Tractebel Engie): online calculation of Pu content requirements in MOX fuel fabrication to obtain energy equivalence for different types of in-core fuel management
- Best choice of scenario depends on specific needs:
 - LIFO = Last In, First Out, or "Hot first": much less spent UOX to reprocess for same energetic content in MOX fuel = reduced reprocessing effort
 - FIFO = First In, First Out, or "Cold first": accelerated emptying of spent fuel pools = reduced storage facility capacity requirements
 - Exercise needs to done for each specific case as results depend on storage constraints, in-core fuel management, equivalence objectives, acceptable MOX fraction, ... very attractive to think about and optimise it!